Functional imaging of human auditory cortex.
نویسندگان
چکیده
PURPOSE OF REVIEW This review summarizes recent advances in functional magnetic resonance imaging that reveal similarities in the organization of human auditory cortex (HAC) and auditory cortex of nonhuman primates. RECENT FINDINGS Functional magnetic resonance imaging studies have shown that HAC is a compact region that covers less than 8% of the total cortical surface. HAC is subdivided into more than a dozen distinct auditory cortical fields (ACFs) that surround Heschl's gyri on the superior temporal plane. Recent advances that permit the visualization of the results of functional magnetic imaging experiments directly on the cortical surface have provided new insights into the organization of human ACFs. Evidence suggests that medial regions of HAC are organized in a manner similar to the auditory cortex of other primate species with a set of tonotopically organized core ACFs surrounded by belt ACFs that often share tonotopic organization with the core. Although influenced by attention, responses in HAC core and belt fields are largely determined by the acoustic properties of stimuli, including their frequency, intensity, and location. In contrast, lateral regions of HAC contain parabelt fields that are little influenced by simple acoustic features but rather respond to behaviorally relevant complex sounds such as speech and are strongly modulated by attention. SUMMARY HAC conserves the basic structural and functional organization of auditory cortex as seen in old world primate species. A central challenge to future research is to understand how this basic primate plan has evolved to support uniquely human abilities such as music and language.
منابع مشابه
Selective deficits in human audition: evidence from lesion studies
The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...
متن کاملSelective deficits in human audition: evidence from lesion studies
The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...
متن کاملFunctional imaging of auditory cortex in adult cats using high-field fMRI.
Current knowledge of sensory processing in the mammalian auditory system is mainly derived from electrophysiological studies in a variety of animal models, including monkeys, ferrets, bats, rodents, and cats. In order to draw suitable parallels between human and animal models of auditory function, it is important to establish a bridge between human functional imaging studies and animal electrop...
متن کاملRepeatability of Detecting Visual Cortex Activity in Functional Magnetic Resonance Imaging
Introduction As functional magnetic resonance imaging (fMRI) is too expensive and time consuming, its frequent implementation is difficult. The aim of this study is to evaluate repeatability of detecting visual cortex activity in fMRI. Materials and Methods In this study, 15 normal volunteers (10 female, 5 male; Mean age±SD: 24.7±3.8 years) attended. Functional magnetic resonance images were ob...
متن کاملHuman primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system.
The transverse temporal gyrus of Heschl contains the human auditory cortex. Several schematic maps of the cytoarchitectonic correlate of this functional entity are available, but they present partly conflicting data (number and position of borders of the primary auditory areas) and they do not enable reliable comparisons with functional imaging data in a common spatial reference system. In orde...
متن کاملEvaluation of Model-Based Methods in Estimating Dynamic Functional Connectivity of Brain Regions
Today, neuroscientists are interested in discovering human brain functions through brain networks. In this regard, the evaluation of dynamic changes in functional connectivity of the brain regions by using functional magnetic resonance imaging data has attracted their attention. In this paper, we focus on two model-based approaches, called the exponential weighted moving average model and the d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current opinion in otolaryngology & head and neck surgery
دوره 17 5 شماره
صفحات -
تاریخ انتشار 2009